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Classification of microarray samples'

Example: small round blue cell tumors; Khan et
al, Nature Medicine, 2001

e Tumors classified as BL. (Burkitt lymphoma),
EWS (Ewing), NB (neuroblastoma) and RMS

(rhabdomyosarcoma).

e There are 63 training samples and 25 test

samples, although five of the latter were not
SRBCTs. 2308 genes

e Khan et al report zero training and test
errors, using a complex neural network model.

Decided that 96 genes were “important”.

e Upon close examination, network is linear.
It’s essentially extracting linear principal

components, and classifying in their subspace.

e But even principal components is

\ unnecessarily complicated for this problem! /
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/ ‘ Khan data. \
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Nearest Shrunken Centroids'

Idea: shrink each class centroid towards

the overall centroid. First normalize by
the within-class standard deviation for

each gene.

Detalils

e Let z;; be the expression for genes 1 =1,2,...p

and samples 5 =1,2,...n.

e We have classes 1,2,... K, and let Cx be indices

of the ni samples in class k.

e The 1th component of the centroid for class k is
Tike = ZjEC’k xij /nk, the mean expression value
in class k for gene ¢; the ith component of the

overall centroid is Z; = > 7_, mi;/n.

N /
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~

o Let
di = (Tik — Ti)/si
where s; is the pooled within-class standard

deviation for gene 1:

2 %
S’I, — ZU” xzk; .

’LECk

e Shrink each d;; towards zero, giving d;; and new

shrunken centroids or prototypes
—/ — /
Tik = Zi + Sidsp

e The shrinkage is by

(0,0)

diy, = sign(dir ) (|dir| — A)+

e Choose A by cross-validation.

N /
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‘ K-Fold Cross-Validation I

Primary method for estimating a tuning parameter \.

Divide the data into K roughly equal parts.
1 2 3 4 5

Test | Tran | Train | Tran | Tran

e foreach k =1,2,... K, fit the model with
parameter A to the other K — 1 parts, and
compute its error in predicting the kth part.

Average this error over the K parts to give the
estimate C'V ().

e do this for many values of A. Draw the curve
C'V (M) and choose the value of A that makes
C'V () smallest.

Typically we use K = 5 or 10.

N /
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Results
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4 N

‘ Advantages I

e Simple, includes nearest centroid classifier as

a special case.

e Thresholding denoises large effects, and sets

small ones to zero, thereby selecting genes.

e with more than two classes, method can
select different genes, and different numbers

of genes for each class.
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The genes that matter
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Probability
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Class probabilities I

e For a test sample z* = (x7,z3,...7;). We
define the for class k
p ¥ 2
— T
Z Zk — 2 log Tk
1=1

e The classification rule is then
C(z*) =L if §p(z*) = ming o (™)

e estimates of the class probabilities, by analogy

to Gaussian linear discriminant analysis, are

e—%(sk (™)

IS e

Pr(z™)

e Still very simple. In statistical parlance, this
is a version of a

classifier (also called )

N /
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‘Adaptive threshold scaling'

e idea: define scaling factors 6

for each class:

Tik — T;
dip = . 1

e Use smaller factors for hard-to-classify classes
=> same test error with fewer total number

of genes

e Adaptive procedure: start with all 8, = 1,
and then reduce 65 by 10% for the class k

with largest area under training error curve.

e repeat 20 times and choose solution with

smallest area under curve for all classes

® can reduce total number of

genes used, without increasing error rate

N /
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4 N
‘ Lymphoma data'

Scaling factors changed from (1,1,1) to
(1.9,1,1.5)
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