Classification of microarray samples

Example: small round blue cell tumors; Khan et al, Nature Medicine, 2001

- Tumors classified as BL (Burkitt lymphoma), EWS (Ewing), NB (neuroblastoma) and RMS (rhabdomyosarcoma).
- There are 63 training samples and 25 test samples, although five of the latter were not SRBCTs. 2308 genes
- Khan et al report zero training and test errors, using a complex neural network model. Decided that 96 genes were "important".
- Upon close examination, network is linear.

 It's essentially extracting linear principal components, and classifying in their subspace.
- But even principal components is unnecessarily complicated for this problem!

Khan data

Nearest Shrunken Centroids

Idea: shrink each class centroid towards the overall centroid. First normalize by the within-class standard deviation for each gene.

Details

- Let x_{ij} be the expression for genes i = 1, 2, ... p and samples j = 1, 2, ... n.
- We have classes 1, 2, ..., K, and let C_k be indices of the n_k samples in class k.
- The *i*th component of the centroid for class k is $\bar{x}_{ik} = \sum_{j \in C_k} x_{ij}/n_k$, the mean expression value in class k for gene i; the *i*th component of the overall centroid is $\bar{x}_i = \sum_{j=1}^n x_{ij}/n$.

• Let

$$d_{ik} = (\bar{x}_{ik} - \bar{x}_i)/s_i$$

where s_i is the pooled within-class standard deviation for gene i:

$$s_i^2 = \frac{1}{n - K} \sum_{k} \sum_{i \in C_k} (x_{ij} - \bar{x}_{ik})^2.$$

• Shrink each d_{ik} towards zero, giving d'_{ik} and new shrunken centroids or prototypes

$$\bar{x}'_{ik} = \bar{x}_i + s_i d'_{ik}$$

• The shrinkage is by soft-thresholding:

$$d'_{ik} = \operatorname{sign}(d_{ik})(|d_{ik}| - \Delta)_{+}$$

• Choose Δ by cross-validation.

K-Fold Cross-Validation

Primary method for estimating a tuning parameter λ . Divide the data into K roughly equal parts.

1	2	3	4	5
Test	Train	Train	Train	Train

- for each k = 1, 2, ..., K, fit the model with parameter λ to the other K-1 parts, and compute its error in predicting the kth part. Average this error over the K parts to give the estimate $CV(\lambda)$.
- do this for many values of λ . Draw the curve $CV(\lambda)$ and choose the value of λ that makes $CV(\lambda)$ smallest.

Typically we use K = 5 or 10.

Advantages

- Simple, includes nearest centroid classifier as a special case.
- Thresholding denoises large effects, and sets small ones to zero, thereby selecting genes.
- with more than two classes, method can select different genes, and different numbers of genes for each class.

The genes that matter

Class probabilities

• For a test sample $x^* = (x_1^*, x_2^*, \dots x_p^*)$. We define the discriminant score for class k

$$\delta_k(x^*) = \sum_{i=1}^p \frac{(x_i^* - \bar{x}_{ik}')^2}{s_i^2} - 2\log \pi_k$$

• The classification rule is then

$$C(x^*) = \ell \text{ if } \delta_{\ell}(x^*) = \min_k \delta_k(x^*)$$

• estimates of the class probabilities, by analogy to Gaussian linear discriminant analysis, are

$$\hat{p}_k(x^*) = \frac{e^{-\frac{1}{2}\delta_k(x^*)}}{\sum_{\ell=1}^K e^{-\frac{1}{2}\delta_\ell(x^*)}}$$

• Still very simple. In statistical parlance, this is a restricted version of a naive Bayes classifier (also called idiot's Bayes!)

Adaptive threshold scaling

• idea: define class-dependent scaling factors θ_k for each class:

$$d_{ik} = \frac{\bar{x}_{ik} - \bar{x}_i}{m_k \theta_k \cdot s_i}. (1)$$

- Use smaller factors for hard-to-classify classes
 => same test error with fewer total number
 of genes
- Adaptive procedure: start with all $\theta_k = 1$, and then reduce θ_k by 10% for the class k with largest area under training error curve.
- repeat 20 times and choose solution with smallest area under curve for all classes
- can dramatically reduce total number of genes used, without increasing error rate

Lymphoma data

Scaling factors changed from (1, 1, 1) to (1.9, 1, 1.5)

