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Abstract

We propose a method for detecting differential gene expression
that makes use of the singular value decomposition of the matrix of
expression values. It looks for biological variation that correlates with
the outcome variable, and when used in conjunction with the Signifi-
cance Analysis of Microarrays (SAM) method can sometimes produce
gene lists with lower false discovery rates.

1 Introduction

We consider methods for detecting differentially expressed genes in from a
set of microarray experiments. Most existing methods use some measure of
correlation measure between each gene and the outcome of interest. Consider
for example the setting where we observe an expression profile and a possibly
censored survival time for a set of patients. For each gene one can compute
a score from Cox’s proportional hazard’s model, and then rank the genes
according to this score. Genes whose absolute score is larger than some
threshold are called “significant”. Permutations of the survival times can
be used to estimate the False Discovery Rate (FDR) of the resulting rule
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Figure 1: Underlying conceptual model for Ezample 1.

for each threshold value and the FDR can help determine the best choice of
threshold.

A number of authors have proposed methods for detecting differential
gene expression, including Dudoit et al. (2000), Newton et al. (2001) and Kerr
et al. (2000). The preceding recipe describes the Significance of Microarrays
(SAM) procedure (Tusher et al. 2001). In this short paper, we describe
how eigengenes and eigenarrays can be used to improve the detection of
differential gene expression.

As a motivating example and proof of concept, we generated data on
1000 genes and 40 samples. All expression values were generated as standard
Gaussian, except for genes 1-50 in samples 21-40 which have mean 2.0. We
think of samples 1-20 and 21-40 as representing two different cell types,
with cell type 2 characterized by higher expression in the first 50 genes. An
uncensored survival time was also generated for each sample, with a mean 1.0
units higher in samples 21-40 than in samples 1-20. Thus patients with cell
type 2 tend to live longer than those with cell type 1, but there is considerable
overlap in the two sets of survival times. We would like to detect that the
first 50 genes are differentially expressed in these data. Figure 1 shows the
underlying conceptual model.



Since the survival times differ by only 1 unit across the samples, meth-
ods like SAM that correlate expression with outcome directly will perform
only moderately well in this example. We can do better through use of the
singular value decomposition of the matrix of expression values. This de-
composition produces a set of “eigengenes”- each being a linear combination
of genes, showing the largest variation across the set of samples'. If there
are n samples, there are n eigengenes, ordered from largest to smallest vari-
ance. Corresponding to the eigengenes are the “eigenarrays”, each one being
a linear combination of the expression profiles of the samples (arrays). The
eigenarrays are ordered from largest to smallest variance across the genes.

The top panels of Figure 2 show the first eigengene and eigenarray for
this example. The eigengene picks up the variation due to cell type, while
the eigenarray shows that the first 50 genes are very different from the rest.
The Cox scores for each gene are shown in the bottom left panel. The scores
for the first 50 genes seems to be a little lower on average, but they do not
clearly stand out as being different.

Our proposal in this paper is to find the eigenarray most correlated with
the set of scores, and then do a least squares fit of the scores on the eigenarray
to obtain a new improved set of scores. In this example, the most correlated
eigengene is the first one (shown in the top left) and the least squares fit of
the scores in shown in the bottom right. The scores for the first genes are
now clearly different from the rest.

Here our idea clearly helped. But this will not always be the case. The
method seems to require that there be strong biological variation correlated
with survival time, and detectable from gene expression. Hence we need some
objective way to determine whether the use of the eigenarray helps in a given
example. Fortunately, estimation of false discovery rates via permutations
of the survival times (as done in SAM), can be carried out in exactly the
same way for the new procedure. This FDR can be used to help determine
whether use of the eigenarray is helpful for a given problem.

The left panel of Figure 3 shows the actual number of falsely called genes
as a function of the number of called genes, as the threshold is varied. Results
are shown both from SAM and the proposed procedure (in the examples we
label the new procedure as “eigenSAM”). The FDR is the slope of the curves
in this plot. Computation of these quantities uses the knowledge of the

!The terms “eigengenes”and “eigenarrays” were coined by Alter et al. (2000). They
are the singular vectors, or principal components of the expression matrix
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Figure 2: Results for toy example. Top row shows the leading eigengene and
eigenarray. Bottom left panel shows the Cox scores for each gene. Bottom right
panel shows the improved scores, produced by a least squares fit of the scores onto
the eigenarray in the top right panel. The vertical lines mark the boundary between
the first 50 (non-null) genes and the rest.



Number of genes falsely called

Actual Estimated

500

-4
Ve

X

S

1 SAM
&
0 / IgenSAM
/ "

0O— Oam

500

y X

Y

1 SAM g/
0 - /a)& eigenSAM
XO/

1 5 10 50 500 1 5 10 50 500

50
50

Number of genes falsely called

— 1R

Number of genes called significant Number of genes called significant

Figure 3: Results for toy example

first 50 genes are truly differentially expressed, and the others are not. The
top right panel shows the estimated version of these quantities, using data
permutations. In both cases the FDR is seen to be considerably lower for
the proposed procedure.

Can the use of eigenarrays give misleading results? We next tried to
“break” the procedure. We generated data on 7 = 1,2,...1000 genes and
j = 1,2,...40 samples, where y; ~ N(10,1) for j < 20, y; ~ N(12,1) for
7 > 20, and Tyj ~ N(,U,ij, 1) where

pij = Bj+Ty
B; = 2for jodd, and zero otherwise
1,; = 1fori <50and j > 20, and 0 otherwise (1)

Hence the survival time is higher in the second group of 20 patients, as is the
expression of the first 50 genes. But for all genes there is a much stronger
variation in expression values that is uncorrelated with the survival difference.

Figure 4 shows the actual and estimated number of falsely called genes.
As we see, the use of the eigenarray has improved both the actual and es-
timated false discovery rates. The procedure has in effect removed the ex-
traneous variation (similar to blocking in an analysis of variance) and this
results in improved accuracy.
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Figure 4: Results for second toy example

In other experiments we were unable to concoct an example where use
of the eigenarray increased the FDR. In some cases it didn’t help, but this
also was clear from the estimated false discovery rate. In practice, one can
simply try the procedure using the false discovery rate as a guide.

2 Details

Let X be the n x p matrix of expression values, for p genes and n samples.
Assume the columns of X are centered. Denote the singular value decompo-
sition of X by

X =UDV" (2)

where U is an p X n orthonormal matrix with columns wuy,uy...u,, V is
an n X n orthonormal matrix with columns vy, vs,...v, and D is an n X n
diagonal matrix with diagonal elements equal to the singular values 6; of X.
We assume p < n. Thus

Xvj=0;u;; 7=1,2,...n (3)



where u; and v; are vectors of length p and n respectively. Alter et al. (2000)
call u; the “eigenarrays” , and v; the “eigengenes” of X. We describe our
idea in the case of a survival outcome and associated Cox scores, but the
same idea can be applied to other outcome types such as two-class, paired,
quantitative etc. Here are the steps:

1. Compute the eigenarrays u; and eigengenes v; of X, j =1,2,...n.
2. Compute the Cox scores d = (dy, ds, . ..d,) for each of the p genes.
3. Find the eigenarray with largest absolute correlation with d:

k= argmaxi\corr(d, Uz)‘

4. Compute new scores d’ equal to the least squares fit of d on wuj. Since
each u; is a unit vector with mean zero, this has the simple form

d'=cz+(d,uk)-uk

We then use the new scores d’' in the same way that the original scores d
were used: we rank the genes by their scores to determine their relative
significance.

Suppose that instead of a survival time outcome, we have a quantitative
outcome y, and the gene score is chosen to be simply the inner product
of each row of the expression matrix with . Then the above procedure is
equivalent to the following:

e Find the eigengene v, most correlated with y
e Replace y by its least squares fit § on vy.

e Compute new scores d’ as the inner product of each gene with g.

Now one doesn’t typically use the simple inner product to score a gene. One
would instead use a standardized inner product, i.e. the least squares slope
divided by its estimated standard error. However the point of this is to show
that replacing the scores by their least squares fit on the most correlated
eigenarray, is approximately equivalent to replacing the outcome variable
with its least squares fit on the most correlated eigengene.

Estimation of the false discovery rate is done via permutations of the
survival times, as in SAM. It uses the eigengenes and eigenvalues of X from
above: these do not have to be recomputed. Here are the steps:
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1. Randomly permute the survival times.
2. Compute the Cox scores d* = (d}, d3, . .. d;) for each of the p genes.

3. Find the eigenarray with largest absolute correlation with d:

kx = argmax;|corr(d*, u;)|

4. Compute new scores d* equal to the least squares fit of d* on uy..

5. Repeat steps 1-4 many times, to get the expected quantiles of the null
scores d*.

The resulting quantiles are used to estimate the cutpoints and the corre-
sponding FDR, as detailed in Tusher et al. (2001).

3 Lymphoma example

We applied this idea to a dataset on diffuse large cell lymphoma from Rosen-
wald et al. (2002). There are 7399 genes and 240 patients in the training
set, and 80 patients in the test set. Time until death (possibly censored)
is available for each patient. Figure 5 shows the estimated performance of
SAM and eigenSAM on the training set. Use of the eigenarray seems to have
improved the FDR considerably.

To assess performance on the test set, we computed Cox scores for the
test set and declared any gene with score larger than 2.0 in absolute value
to be a truly significant (non-null) gene. We then varied the threshold for
SAM and eigenSAM in the training set, and computed the number of truly
significant genes each time. The results are shown in Figure 6. The new
procedure find more significant genes in the test set, for the same number
of genes called significant in the test set, although neither method does very
well overall. For example with 200 genes called, SAM finds 9 truly significant
genes and eigenSAM finds 20. These are listed in Table 1 (note that there
are some duplicates- the same gene with different clones). Only one gene
is common to the two lists, and eigenSAM has found more genes and genes
with lower p-values.

The eigenarray most correlated with the Cox gene scores was the one with
third highest variance ug, with a correlation of .68. Figure 7 shows a plot
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Figure 5: Training set results for lymphoma ezample.

o _|
@©
o
X
o _|
©
@
n
m .
2 eigenSAM
£
£ o
£ =
c
=y
o X
@ SAM
Qo
S
=1
[=4
o _|
Q o
o X
/
o x/
o - X/
T T T T T T
0 200 400 600 800 1000

number of genes called significant

Figure 6: Test set results for lymphoma example.



Table 1: Genes significant in test set, from SAM and eigenSAM
Test set
p-value | Gene

SAM

0.0025 | —U10485—*A A457051—Hs.40202—lymphoid-restricted membrane protein
0.0048 | —J03040—*W46959—Hs.111779—secreted protein, acidic
0.0065 | ——*AA828425Hs.291892—EST
0.0079 | —M25393—*AA193262—Hs.82829—protein tyrosine phosphatase
0.0158 | —M61906—*N69643—Hs.6241—phosphoinositide-3-kinase, regulatory subunit
0.0192 | —1.C33743
0.0198 | ——LC32442
0.0203 | —X52142—*W44416—Hs.251871—CTP synthase
0.0211 —V00568 Hs.79070—v-myc myelocytomatosis viral oncogene homolog (avian)

eigenSAM
0.0002 | —X61118—*AA280651—Hs.184585—LIM domain only 2 (rhombotin-like 1)
0.0003 | —U11732—*AA831368—Hs.169081—ets variant gene 6 (TEL oncogene)
0.0006 | —AF178632—*AA827145—Hs.6048—fem-1 homolog b (C. elegans)

0.0007 | —X61118—*AA280651—Hs.184585—LIM domain only 2 (rhombotin-like 1)
0.0017 | —X61118—*AA261902—Hs.184585—LIM domain only 2 (rhombotin-like 1)

0.0025 | —U10485—*AA457051-—Hs.40202—lymphoid-restricted membrane protein
0.0032 | —*AA832051—Hs.369936—ESTs

0.0063 | —*AA731512——

0.0071 | —1.C19314

0.0077 | —M15395—*A A287298—Hs.83968—integrin, beta 2 (antigen CD18 (p95),
0.0080 | —M26004—*AA262317—Hs.73792—complement component (3d/Epstein Barr virus)
0.0080 | —M14745—*W63749—Hs.79241—B-cell CLL/lymphoma 2

0.0087 | —U07620—*R39221—Hs.151051—mitogen-activated protein

0.0108 | —D89289— AA056991—Hs.118722—fucosyltransferase 8 (alpha (1,6)
0.0111 —X12654—*A A291398—Hs.84746—chromosome condensation 1

0.0131 | —X55188—*R76698—Hs.56729—lymphocyte-specific protein 1

0.0134 | —U44403—*H29540—Hs.75367—Src-like-adaptor

0.0144 | —M26004—*AA465705—Hs.73792—complement component

0.0195 | —BC007655—*R72567—Hs.267819—protein phosphatase 1
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Figure 7: Survival time versus the eigengene most correlated with survival time.
Censored observations are indicated by a “+”.

of survival time versus the corresponding eigengene v3. Larger values of the
eigengene correlate with poorer survival. Examination of the characteristics
of the samples corresponding to low and high values of this eigengene, might
reveal biological insight as to underlying mechanisms of the disease.

4 Discussion

The proposal of this paper can be applied to outcome measures other than
survival times, including categorical, quantitative or paired samples. This
proposal will be offered as an option in a future version of the SAM package
available at http://www-stat.stanford.edu/~tibs/SAM

The same general idea can potentially be applied to a different problem:
sample classification from gene expression profiles. This is a topic for future
research.
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