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Abstract

Background

We propose a new method for supervising learning from gene ex-
pression data. We call it “Tree Harvesting”. This technique starts
with a hierarchical clustering of genes, and models the outcome vari-
able as a sum of the average expression profiles of chosen clusters, and
their products. It can be applied to many different kinds of outcome
measures, such as censored survival times, or a response falling in two
or more classes (e.g. cancer classes). The method can discover genes
that have strong effects on their own, and genes that interact with
other genes.

Results

We illustrate the method on data from a lymphoma study, and on
a dataset containing samples from 8 different cancers. It identified
some interesting gene clusters and interactions between genes.

Conclusions

Tree Harvesting is a potentially useful tool for exploration of gene
expression data and identification of interesting clusters of genes wor-
thy of further investigation.
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1 Background

In this paper we introduce “tree harvesting” a general method for supervised
learning from gene expression data. The scenario is as follows. We have
real-valued expression measurements for thousands of genes, measured over
a set a samples. The number of samples is typically 50 or 100, but will be
larger in the future. An outcome measurement is available for each sample,
such as a survival time or cancer class. Our object is to understand how the
genes relate to the outcome.

The generic problem of predicting an outcome measure from a set of
features is called “supervised learning”. If the outcome is quantitative, the
term “regression” is used; for a categorical outcome, “classification”. There
are many techniques available for supervised learning, for example linear
regression, discriminant analysis, neural networks, support vector machines
and boosting. However these are not likely to work “off the shelf”, as ex-
pression data presents special challenges. The difficulty is the number of
inputs (genes) is large compared to the number of samples, and they tend
to be highly correlated. Hastie et al. (2000) describe one simple approach
to this problem. Here we build a more ambitious model that includes gene
interactions.

Our strategy is to first cluster the genes via hierarchical clustering, and
then consider the average expression profiles from all of the clusters in the
resulting dendrogram as potential inputs into our prediction model. This has
two advantages: 1) hierarchical clustering has become a standard descriptive
tool for expression data (see e.g. Eisen et al. (1998)), and so by “harvesting”
its clusters, the components of our prediction model will be convenient for
interpretation, and 2) by using clusters as inputs, we bias the inputs towards
correlated sets of genes. This reduces the rate of overfitting of the model. In
fact we go further, and give preference to larger clusters, as detailed below.

The basic method is described in Section 2.1 for a quantitative output
and squared error, while Section 2.3 generalizes it to cover other settings like
survival data and qualitative responses. Tree harvesting is illustrated in two
real examples in Sections 2.4 and 2.5. Section 2.6 describes a simulation study
to investigate the performance of the method. In Section 2.7 we generalize
Tree Harvesting further, allowing nonlinear expression effects. Finally we
make some concluding remarks in Section 3.



2 Results

2.1 Tree Harvesting

As our starting point, we have gene expression data x;; for genes7 =1,2,...p
and samples j = 1,2,...n, and a response measure y = (Y1, Yo, ...Yn) for
each sample (each y;, may be vector-valued). The response measure can
take on many forms: for example a quantitative measure like percentage
response to a treatment, a censored survival time, or one of K cancer classes.
The expression z;; data may be from a cDNA microarray, in which case it
represents the log red to green ratio of a target sample relative to a reference
sample. Or z;; might be the expression level from an oligonucleotide array.

The basic method has two components: a hierarchical clustering of the
gene expression profiles, and a response model. The average expression pro-
file for each cluster provides the potential features (inputs) for the response
model. In fact we could start with any clustering or grouping of the genes,
even one that has overlapping groups. We have chosen to start with hierar-
chical clustering because of its popularity in microarray data analysis, and
the fact that it produces a wide range of cluster sizes.

Denote a cluster of genes by X, and the corresponding average expres-
sion profile by Z. = (%1, Te2, - - - Tep)- Starting with p genes, a hierarchical
clustering produces 2p —1 such clusters labelled ¢y, ¢z, . . . ¢2p 1, including the
individual genes themselves.

The response model approximates the response measurement by some of
the average gene expression profiles and their products, with the potential
to capture additive and interaction effects. To facilitate construction of the
interaction model, we translate each z;; to have minimum value 0 over the
samples:
$;~kj = Tyj + min]-(mij). (1)
The notation Z} denotes the average expression profile for a cluster ¢, using
these translated values.

For a quantitative response y;,j = 1,2,...n, the model takes the form
Ui =DBo+ > BTy i+ Brw T ck, i, ; + > Brwkr Ty T i -+ (2)

k k k! kk! k"
where (5, and [y are parameters that are estimated by minimizing the sum of
squared errors Y, (y; —#;)?. Since each z; has minimum value 0, the product
terms represent positive or negative synergy between the genes involved.
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Clearly it is not feasible, or even desirable to include all clusters in the
sums in equation (2). Instead we build up the model in a forward stagewise
manner as follows:

e Initially the only term in the model M is the constant function 1. The
candidate terms C consists of all of the 2p—1 average expression profiles
z5.

e At each stage we consider all products consisting of a term in M and a
term in C, and add in the term that most improves the fit of the model
in terms of a score statistic S.

e We continue until some maximum number of terms M have been added
to the model

For example at the first stage we enter the best average expression profile
T, ; this corresponds to the product of z7 and the constant function 1. The

*
c1?

resulting model is has the form y; = Bo + B@Zl,j, where By, 1 are found by
least squares. At the second stage, the possible additions to the model are
523’32’]- or Blgiﬁzl,jj;,j for some cluster c,.

In general this algorithm can produce terms involving the products of 3 or
more average expression profiles. However the user can put an explicit limit
on the order of interaction I allowed in the model. For simplicity of inter-
pretation, in the examples in the paper we set I = 2, meaning that products
are limited to pairwise products. This is achieved by only considering single
terms (nonproducts) in M as candidates in the second step.

There are crucial computational details that make this algorithm run fast
enough for practical applications. First, before the forward stepwise process
is started, we need the average expression profiles for all of the 2p—1 clusters.
This is achieved in a natural recursive fashion using the tree structure avail-
able after a hierarchical clustering: the average expression profile in a node is
the weighted average of the two average profiles of the daughter nodes, where
the weights are the sizes of the daughter nodes. Other node specific statistics,
such as variances and within-variances can be computed in a similar way.

Secondly, in the second step of the algorithm we must search over all
2p — 1 clusters to find the term that most improves the fit of the model. This
is achieved by orthogonalizing the candidate average expression profiles with
respect to the terms already in the model, and then computing a score test
for each candidate term. With a quantitative response and least squares, this
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process gives exactly the contribution of each candidate term to the model.
For survival, classification and other likelihood-based models, it is a (widely
used) approximation.

2.2 Additional features of the procedure
2.2.1 Biasing towards larger clusters:

Typically gene expression datasets have many highly correlated genes. In
addition, most clusters considered in the harvest procedure are subsets of
other clusters. Hence if an average expression profile z; is found to most
improve the fit of the model in step 2 of the procedure, it is likely that
the average expression profile of some larger cluster, perhaps containing the
chosen cluster, does nearly as well as Z%. Since a) all else being equal we
prefer larger clusters (they’re more likely to be biologically meaningful), and
b) there are many more smaller clusters than larger clusters, we bias the
selection procedure towards larger clusters. Specifically, if the score for the
cluster ¢ is S., we chose the largest cluster ¢ whose score S. is within a
factor (1 — ) of the best, that is satisfying S¢ > (1 — @)S.. The parameter
a may be chosen by the user: we chose o = .10 in our examples. The cluster
¢’ often contains some or all of the genes in ¢, but this is not a requirement.
Although this biases the selection towards larger clusters, a single gene can
still be chosen if its contribution is spectacular and unique.

2.2.2 Model size selection and cross-validation:

Having built a harvest model with some large number of terms M, we carry
out a backward deletion, at each stage discarding the term that causes the
smallest increase in sum of squares.We continue until the model contains only
the constant term. This gives a sequence of models with numbers of terms
1,2,... M, and we wish to select a model size, and hence one of these models.
The model size is chosen via K-fold cross-validation. The data is split into
K parts. For each £ = 1,2,... K the harvest procedure is trained on all of
the data except the kth part, and then data in the kth part is predicted from
the trained model. The results are averaged over £ = 1,2,... K. This is
illustrated in the examples in the next two sections.



2.2.3 Expanding the clusters

Hierarchical clustering uses a sequence of discrete partitions of genes. Hence
for a given cluster, there may be genes not in that cluster that are more
highly correlated with the cluster’s average expression profile, than some of
the genes in the cluster. To account for this, we simply look for such genes in
the final set of clusters and report them as “Extra genes” belonging to each
cluster.

Finally, we summarize all of the steps in Algorithm 1 below.

Algorithm 1: Tree Harvesting

1. Initially the only term in the model M equal is the constant function
1. The candidate terms C consists of all of the 2p—1 average expression
profiles Z7.

2. At each stage we consider all products consisting of a term in M and
a term in C, and find the term that most improves the fit of the model
based on a score statistic S. We add to the model the term involving the
largest incoming cluster whose score is at least (1 — «)S, with a = .10
say.

3. We continue until some maximum number of terms M have been added
to the model.

4. Backward deletion is applied, and cross-validation is used to select the
best model size, and hence the final model.

2.3 The Tree Harvesting for general response variables

The tree harvest method can be applied to most commonly occurring types
of response data. Given responses y = (y1, Yo, - - - Yn), we form a model-based
approximation = (9,72, - . . 7)) to minimize a loss function

£(y,n) (3)




Table 1: Some common response types and loss functions

Response type Loss function

Quantitative Sum of squares Y,(y; — 1;)*
Censored survival time Partial log-likelihood
Categorical Multinomial log-likelihood

Each quantity 7; is a function of the average gene expression profiles, having
the form given in (2):

nj = fo+ Z Bk"izk:j + Z ﬂkk,jzk,jfzk’,j + Z ﬁkk,k,lj:kajj:k’zjjzk” J (4)
k kK k. k! k"

Some common response types and loss functions are listed in table 1.

As outlined in the previous section, the model is built up in a forward
stepwise manner. Considering ¢ to be a function of the parameters § =
{ Bk, Br i }, addition of each new term to the model is based on the size of
the score statistic

0¢/0
5= )
—(0%¢/065)
and similarly for 3 x. The censored survival time and categorical response
models are illustrated in the next two sections.

2.4 Example: survival of lymphoma patients

Figure 1 shows the dataset used in this example consisting of 3624 gene ex-
pression measurements on 36 patients with Diffuse Large Cell Lymphoma
(DLCL). These data are described in Alizadeh et al. (2000). The columns la-
bels refer to different patients, and the row labels identify the genes. We
have applied hierarchical clustering to the genes and samples separately.
Each clustering produces a (non-unique) ordering, one that ensures that the
branches of the corresponding dendrogram do not cross. The figure displays
the original data, with rows and columns ordered accordingly.

For each of the 36 patients, a (possibly censored) survival time is available;
these range from 1.3 to 102.4 months, and 19 of the 36 patients died in the
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Figure 1: The DLCL expression matriz, with rows and columns ordered according

to a hierarchical clustering applied separately to the rows and columns.



study period. An appropriate response model is Cox’s proportional hazards
model (Cox (1972)). This has the form

h(t|2) = ho(t)e™® (6)

Here z = (21, 29,...2y,) are risk factors (features), and h(t|z) denotes the
hazard function for an individual with feature values z; hy(t) is the baseline
hazard function for an individual with risk factors z = 0. The unknown
function r(z) represents the log-relative risk of dying at any time ¢ for an
individual with z = z vs an individual with z = 0. In the tree harvest model,
the features z are average expression profiles and we take r(z) to be of the
form

Bo + Z M‘Zk,j + Z ﬁkk,j:k,jj:k’ J

as in model (2). The tree harvest algorithm computes an approximate score
test from the partial likelihood, to decide which term is entered at each stage.

We ran the harvest procedure allowing a maximum of six terms, and it
produced the following results:

Node Parent Score -2log-likelihood Size

1 3005 0 2.980 104.34
2 2236 3005 2.784 94.91
3 443 0 2.579 84.12

4 s2461 3005 2.948 70.06
5 52188 3005 2.658 60.16

= = N W o

Cox survival model fit to all five terms:

coef exp(coef) se(coef) z P
zl 4.118 61.442 0.921 4.47 7.7e-06
z2 1.072 2.922 0.293 3.66 2.5e-04
z3 2.195 8.976 0.528 4.15 3.3e-05
z4 1.079 2.941 0.281 3.83 1.3e-04
zb -0.667 0.513 0.221 -3.02 2.5e-03
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Figure 2: Scores for each cluster, from first stage of Harvest procedure. The green
horizontal line is drawn at (1 — «) times the mazimum score, with o = .1. The
largest cluster having a score above this line is chosen, indicated by the blue plotting
symbol.

Some explanation is needed. At each stage the “Node” refers is the cluster
whose average expression profile is chosen for addition to the model. “Parent”
is the number of the cluster, already in the model, that is to be multiplied by
the Node average expression profile; Parent=0 refers to the constant function
1. Nodes starting with ”’s” for Node or Parent indicate single genes. “Score”
is the score value achieved by addition of the term; it is roughly a Gaussian
variate, so that values > 2 are reasonably large.

Focussing just on the selection of the first cluster, Figure 2 shows all of
the cluster scores The green horizontal line is drawn at (1 — «) times the
maximum score (o = .1), and we chose the largest cluster (blue point) above
this line. This cluster is the 8 gene cluster #3005, shown in Figure 4

Overall the resulting model has the form

—% % % _x %
2.195- T g3+ 1.079 - Tso461,5 * L3005,5 — 0.667 - T2188,5 * L3005,5
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Figure 3: Training error curve (solid) and Cross-validation error curve (broken)

A positive coefficient indicates increased risk. The training set and cross-
validation curves are shown in Figure 3. The minimum of the CV curve
occurs at one term, suggesting that the subsequent terms may not improve
prediction.

The gene clusters are shown in Figure 4 and listed in the Appendix.
Focussing only on the first cluster (#3005), we computed the average ex-
pression for each of the 36 patients. Then the patients were divided into
two groups: those with average expression below the median (Group 1), and
those with average expression above the median (Group 2). The Kaplan-
Meier survival curves for these two groups are shown in Figure 5 and are
significantly different (p = 2.4e — 05). If each of the 3624 genes is ranked
from lowest (1) to highest (3624) value of the Cox score statistic, the average
rank of the 8 genes in the cluster #3005 is 3574.5. Hence these genes are
among the strongest individually for predicting survival, but are not the 8
strongest genes. Rather they are a set of genes with very similar expression
profiles, having high correlation with survival.
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Figure 4: Lymphoma data: clusters from tree harvest procedure, with columns in
(expected) survival time order
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Figure 5: Survival curves of the two groups defined by the low or high expression
of genes in the first cluster from tree harvesting. Group 1 has low gene expression,

and group 2 has high gene expression. The survival in the groups is significantly
different (p = 2.4e — 05).

2.5 Example: Human Tumor Data

In this example the response is a categorical variable designating a cancer
class. We use a subset of 61 of the tumors described in Ross et al. (1999) and
Scherf et al. (1999), omitting the two prostrate tumors and the one unknown
class. There are expression values for 6830 genes for each of the tumors, with
the following distribution across cancer classes:

BREAST | CNS | COLON | LEUKEMIA | MELANOMA | NSCLC | OVARIAN | RENAL

9 ) 7 8 8 9 6

9

Here the tree harvest method builds a multiple logistic regression (MLR)
model in a stagewise fashion, using similar steps to those used for the Cox
model for survival data. The goal here is to model the probability of the
tumor class, given the expression values. In general terms, if the class variable
is denoted by y taking values in {1,2,...,J} and the predictor variables by
Z1,T2, ..., Tp & linear MLR model has the form

Py =1|z)

log ————~
& Ply = Jlz)

Bro + BuiTi + Biaxa + - - + BipTyp
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Py = 2|z)

1 Y2 TN = . _ 7
0og P(y _ J|.’L‘) ﬁQO + ﬁ21$1 + ,622.%2 + + 5217 1Zp ( )
Ply=J—-1lz
log SD(y = J|$; : = Bu-1o + Bu—1®1 + 12Tz + - -+ B—1)plp

As before, the x, will be cluster averages, possibly individual genes, or pair-
wise products of these.

The logistic transform is a natural scale on which to model the K prob-
abilities; the inverse transformation

exp(Bro + Briz1 + Broxa + -+ - + Brptp)

Ply=klX=2) =
v ="H ) 1+ Y45 exp(Bro + Briwt + Brama + - - - + BrpTp)
fork=1,...,K—1,and for k = K (8)
1

P y = KX =2 e —
( | ) 1+ Y55 exp(Bro + Brizr + Braa + - + BrpTyp)

guarantees that the probabilities sum to one and are positive. The model is
usually fit by multinomial maximum likelihood.

Since the response is really multidimensional, we do not expect a single x
to be able to distinguish all the cancer classes; this would imply that a single
gene average creates an ordering that separates the cancer classes. Typically
several are required.

At each stage the tree harvest algorithm considers augmenting the cur-
rent fitted MLR model with a new term, candidates being any of the node
averages, individual genes, or products of these with terms already in the
model. As before a score statistic is used, appropriate for the multinomial
model.

The results of a tree harvest fit allowing 7 terms are as follows:

Node Parent Score -2log likelihood Size

1 1177 0 6.48 197.53 6
2 3843 0 1.97 132.34 4
3 2008 0 1.78 79.34 3
4 1665 3843 0.85 71.01 3
5 5009 0 0.69 51.91 68
6 5087 2008 0.59 9.32 9
7 820 3843 0.55 0.00 2
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The deviance is a measure of lack-of-fit of the multinomial model, and we
see that with seven terms in the model we have a saturated fit (the model
produces probability estimates which are essentially 1 for each observation
and the relevant class. This is almost certainly an overfit situation, since we
are fitting 56 parameters to 61 observations.

Figure 2.5 shows all of the genes in the seven terms found by the model;
the column order is chosen arbitrarily to separate the cancer classes (and is
randomly chosen within cancer class). We used 10-fold cross-validation to
find a good number of terms for the model. Figure 7 shows the results, in
terms of the deviance statistic (—2x log-likelihood). For these data the two
term model minimizes the CV deviance curve, and corresponds to the top
two bands in figure 2.5.

Figure 8 shows a scatterplot of the average expression for each of the first
two clusters, with samples identified by cancer class. Some clear separation
in the cancer classes is apparent.

2.6 Simulations

We carried out a simulation experiment to assess how well tree harvesting
discovers “true” structure. To ensure that the gene expression measurements
were realistic in magnitude and correlation, we used the matrix of 3624 x 36
lymphoma expression measurements for our study. Artificial survival and
censoring times were then generated, to produce a simulated dataset for
harvesting.

Two scenarios were considered, additive and interaction. For the additive
scenario, we randomly chose a cluster at random and generated the censored
survival time with a relative risk of 2 as a function of its average expres-
sion profile. As indicated in the Table 2 the randomly chosen cluster was
taken from either single genes, small clusters (< 10 genes) or larger clusters
(between 10 and 300 genes). Tree harvesting was allowed to enter just one
term.

For the interaction scenario, we randomly chose one cluster ¢; with be-
tween 2 and 10 genes, and then chose the second cluster c; to the cluster
with between 2 and 10 genes whose average expression profile had the small-
est correlation with that for ¢;. This made the two clusters as independent
as possible, giving the harvest procedure the most chance of discovering their
interaction. The survival data were then generated with relative risk function
4%, + 4%, + 3|T¢, T, — ] Where 7 is the projection of Z., Z., on Z., and Z.,.
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Figure 6: The seven clusters found by tree harvesting for predicting the tumor
classes. They are ordered from top to bottom in terms of stagewise entry into
the model. The vertical boundaries separate cancer classes.
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Figure 7: Model deviance for the tumor data. The lower curve is on the
training data, and reaches 0 after 7 terms (a saturated fit). The Oth term is
the constant fit. The upper curve is based on 10-fold cross-validation, where
care was taken to balance the class distribution in each fold.
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Figure 8: Plot of average expression for each of the first two clusters, with
samples identified by cancer class. Some clear separation is apparent.
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Table 2: Simulation results: Relative risk=2.0 in additive scenarios. The
value p is the number of genes in the true underlying model.

Scenario Ave # Ave # Prop of Harvest Prop of true genes Ave

in true in estimate genes in true in Tree Harvest |Corr|
p=1 1.0 2.4 .80 .80 .86
2<p<10 3.4 4.8 .60 .60 91
10 <p < 300 26.2 6.4 .60 19 a7
interaction 3.4 2.6 28 21 .65

Tree harvesting was allowed enter three terms.

The results are shown in Table 2. The numbers are averages over 5
simulations. The columns show the average number of genes in the true
cluster, average number of genes in the cluster found by tree harvesting, the
proportion of the genes found by tree harvesting that are in the true cluster,
and vice-versa. The final column show the average absolute correlation of the
average expression profile of the true cluster with the estimated cluster. For
the interaction scenario, these quantities refer to the pooled set of genes that
make up the interaction. If more than one interaction was found, the one
having greatest overlap with the true interacting clusters is reported. We see
that tree harvesting returns clusters that are a little too large when the true
cluster is a single gene, and a little too small when the true cluster is large.
In the additive scenario, it does a fairly good job at discovering the true
cluster or one similar to it. However it only correctly discovers interactions
about one quarter of the time. A greater number of samples are needed to
accurately find interactions among such a large set of genes. On the other
hand, the correlations in the rightmost column are all quite high, indicating
that tree harvesting is able to find clusters that are nearly as good as the
true ones.

Table 3 shows the results for the additive scenarios when the relative
risk is lowered to 1.0. As expected, they are somewhat worse, although the
average correlations are still around .60.

2.7 Non-linear Tree Harvest models

In the harvest procedure described above, the effect of gene expression is
modelled linearly. Thus in modelling each term we assume that increasing or
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Table 3: Simulation results: Relative risk = 1.0

Scenario Ave # Ave # Prop of Harvest Prop of true genes Ave

in true in estimate genes in true in Tree Harvest |Corr|
p=1 1.0 1.6 .24 .60 .61
2<p<10 3.4 4.6 13 .20 .58
10 <p <300 26.2 3.8 40 21 .61

decreasing gene expression has a consistent effect on the outcome. However
it is biologically plausible for a gene to have a nonlinear effect: for example
increasing expression may correlate with longer survival, but only up to some
level. Beyond that level, worse survival might result.

To allow for nonlinear effects, flexible bases of functions could be used for
each gene. However with large number of genes this would tend to quickly
overfit. Hence we allow a simple quadratic function for each gene:

b(z) = (z — d)’ (9)

We first decorrelate b(x) with respect to the linear term for the same gene,
and then allow the transformed expression b(x) in place of the expression x
in the GEM model. If this term is multiplied by a positive coefficient, then
the effect of a gene has a “U” shape, decreasing and then increasing . For a
negative coefficient, the effect is an inverted “U”. When the nonlinear option
is used in harvesting, the procedure trues both linear and nonlinear terms at
each stage, and chooses the one with maximum score.

Ezxample: lymphoma data continued

We tried tree harvesting with the nonlinear option for the lymphoma
dataset, and it gave the first four terms shown below. Quadratic terms were
entered in terms 2-4; these a better fit up to term 3 than the linear model
fit earlier, but didn’t do as well after that. The clusters from this model are
shown in Figure 9.

Node  Parent Score -2Log-likelihood Size Non linear?

1 3005 2.980 104.34 8 No
2 82597 0 3.891 91.18 1 Yes
3 s1021 3005 3.919 81.59 1 Yes
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Figure 9: Lymphoma data: clusters from tree harvest nonlinear model, with
columns in (ezxpected) survival time order

4 sb83 3005 3.314 72.39 1 Yes

Cox model fit to all 4 terms

coef exp(coef) se(coef) z p
z1l 3.107 22.36 0.6551 4.74 2.1e-06
z2 0.794 2.21 0.1990 3.99 6.6e-05
z3 0.380 1.46 0.0954 3.98 6.8e-05
z4 0.238 1.27 0.0729 3.27 1.1e-03

In the second cluster for example, we see that survival time is greatest
for moderate expression levels, and is worse for very low or very high levels.
Overall, the lack of significant improvement of the nonlinear model over
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the linear model gives greater confidence that the linear shape for each term
is appropriate in this example. However quadratic models may well be useful
for other gene expression experiments.

3 Conclusions

The tree harvest procedure is a promising, general method for supervised
learning from gene expression data. It aims to find additive and interaction
structure among clusters of genes, in their relation to an outcome measure.
This procedure, and probably any procedure with similar aims, requires a
large number of samples to successfully uncover such structure. In the ex-
amples in the paper, the method was somewhat hampered by the paucity of
available samples. We plan to try tree harvesting on larger gene expression
datasets, as they become available.

We used a forward stepwise strategy involving sum and products of the
average gene expression of chosen clusters. This was inspired by the MARS
algorithm of Friedman (1991). We chose this strategy since it produces inter-
pretable, biologically plausible models. Other models could be built from the
average gene expression of clusters, including tree-based models or boosting
methods (see e.g. Friedman et al. (2000)).

Appendix

Clusters from Harvest model applied to lymphoma data:

Cluster 3005

"Unknown UG Hs.36830 ESTs,

"Similar to rhoGap protein"

"hPMS1=DNA mismatch repair protein=mutL homologue"

"Phosphoribosylglycinamide formyltransferase, phosphoribosylglycinamide synthetas
"5’-terminal region of UMK"

"Unknown UG Hs.119769 ESTs"

"Similar to myb-related gene A-myb 5’-region"

"CLK-2=cdc2/CDC28-1ike protein kinase-2"
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Extra genes:

"erk3=extracellular signal-regulated kinase 3"
"metallothionein-II"

Cluster 2236

"MTGR1b=novel member of the MTG8(ETO/CDR) family=Similar to Drosophila nervy"
"Restin (Reed-Steinberg cell-expressed intermediate filament-associated protein)'
"IL-2/IL-4/IL-7/IL-9/IL-15 receptor common gamma chain"

Cluster 443

"Unknown UG Hs.207952 ESTs"
"Unknown UG Hs.184511 ESTs"

Cluster -2461

"Unknown UG Hs.18800 ESTs, Weakly similar to KIAAO579 protein [H.sapiens]

Cluster -2188

"Unknown UG Hs.199756 ESTs"
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