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Abstract

We propose an overall measure of significance for a set of hypothesis
tests. The tail strength is a simple function of the p-values computed for
each of the tests. This measure is useful, for example, in assessing the
overall univariate strength of a large set of features in microarray and
other genomic and biomedical studies. It also has a simple relationship to
the false discovery rate of the collection of tests. We derive the asymptotic
distribution of the tail strength measure, and illustrate its use on a number
of real datasets.

1 Introduction

Dave et al. (2004) published a study correlating the expression of 49, 000 genes
from microarrays with patient survival in follicular lymphoma. The authors
derived a multivariate Cox model for the data, and reported that it was highly
predictive in an independent test set. Tibshirani (2005) re-analyzed this data,
shedding considerable doubt on the reproducibility of the findings.

The left panel of Figure 1 shows the ordered Cox scores T(k) for each gene,
plotted against the expected (null) order statistics

�
(T ∗

(k))), where the expecta-
tion is estimated by repeated permutations of the patient labels. We see that
there is little deviation from the expected values. The right panel shows a
similar plot for the leukemia data of Golub et al. (1999). This is a two class
problem, so the scores T(k) are the ordered two-sample T-statistics. There are
many more large values than we would expect to see by chance. Perhaps this is
why the Golub dataset has become the most common testing ground for authors
proposing new methods for microarray analysis.
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Figure 1: Test statistics (one per gene) from the follicular lymphoma data (left) and
leukemia data (right). Each plot shows the observed test statistics versus the expected
order statistics under the null hypothesis.

In the re-analysis of the Dave et al. (2004) data, it became clear that if there
was predictive power in this dataset, it was very subtle. As seen in the left panel
of Figure 1, the univariate effects of the genes seem to be very small. From this
experience, we felt it would be useful to have a general quantitative measure of
the univariate strength of a large set of predictors. Such a measure could be
routinely reported, as an indication of the predictive strength in a dataset. Of
course such a measure would not capture any multivariate or interactive effects
that might be present.

In this paper we propose a measure of overall significance, called the “tail
strength”. We derive its asymptotic distribution and illustrate its use on a
number of real datasets. We also relate our measure to the false discovery rate
and the area under the ROC curve.

2 Tail strength

2.1 Definition

We first define our measure based on a set of p-values. Later, we give an equiv-
alent form in terms of test statistics. We assume that we have null hypotheses
H0i, and associated p-values pi i = 1, 2, . . .m. Let the ordered p-values be
p(1) ≤ p(2) . . . ≤ p(m).
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We define the Tail Strength as

TS(p1, . . . , pm) =
1

m

m∑

k=1

(
1 − p(k)

m + 1

k

)
. (1)

Now under the global null hypothesis, each pk has a uniform distribution, so that
the expected value of the kth smallest p(k) is k/(m+1) and TS has expectation
zero. The tail strength measures the deviation of each p-value from its expected
value: p(k) < k/(m + 1) causes 1 − p(k)

m+1
k to be > 0. Thus large positive

values of TS indicate evidence against the null hypothesis, that is, it indicates
that there are more small p-values than we would expect by chance. Note also
that the particular form of TS will give more weight to the lowest p-values, so
that it is most sensitive to deviations in the tail.

For the FL and leukemia datasets, TS equals −0.027 and 0.655, respectively.
Hence the FL p-values are slightly larger than we would expect under the uni-
form distribution. In contrast, the leukemia genes are highly significant.

Figure 2 shows the tail strength measure applied to some simulated microar-
ray data. There are 1000 genes (features) and 20 samples; all measurements are
standard N(0, 1), except for the first 100 genes in the second 10 samples, which
were generated as N(∆, 1). The Figure shows tail strength divided by its stan-
dard error, from 100 realizations at each of 7 different values of ∆. We see
that TS has the desired behavior: it is centered around zero, when the overall
null hypothesis holds (∆ = 0) and then becomes more and more positive as ∆
increases.

2.2 Tail strength for test statistics

There is an equivalent form for tail strength in terms of test-statistics Tk, k =
1, . . . , m. Suppose we have a null distribution Prob0 for these statistics, derived
from a set of permutations or asymptotic theory. This yields a set of p-values

p(k) = Prob0(|T |∗ ≥ |T(m−k)|) (2)

where |T(1)| ≤ |T(2)| . . . ≤ |T(m)| are the test statistics ordered by absolute value.
Then

TS =
1

m

m∑

k=1

(
k − p(k) · (m + 1)

k

)
. (3)

Each term is the proportion of test statistics that exceed the expected number,
when testing at value T(k). Thus for example the value 0.655 for the leukemia
data indicates that there are (on average) 65.5% more significant test statistics
than we would expect by chance.

2.3 Relationship to FDR

The quantity TS is closely related to the False Discovery Rate (FDR) (Benjamini
& Hochberg 1985, Efron et al. 2001, Storey 2002, Efron & Tibshirani 2002,
Genovese & Wasserman 2002).

3



0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
2

4
6

8
10

S
ta

nd
ar

di
ze

d 
T

S
 s

co
re

PSfrag replacements
∆

Figure 2: Simulated microarray data: 1000 genes and 20 samples, and we wish to
compare the first ten samples to the second ten. All measurements are standard Gaus-
sian, except for the first 100 genes in samples 11-20, which have mean ∆. Shown are
100 realizations of tail strength divided by its standard error, at each value of ∆. A
horizontal line is drawn at the upper 95% point 1.645.
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Table 1: Possible Outcomes from m Hypothesis Tests

Accept Reject Total
Null True U V m0

Alternative True Q S m1

W R m

We first review the FDR. Table 1 displays the various outcomes when testing
m null hypotheses H0i, 1 ≤ i ≤ m. The quantity V is the number of false
positives (Type I errors), while R is the total number of hypotheses rejected,
which depends on the testing procedure.

The false discovery rate (FDR) (Benjamini & Hochberg 1985) is defined the
expected value of V/R · 1{R>0}. If the decision rule is a thresholding rule, then
one can define the following plug-in estimate of FDR at p-value x (Storey (2002),
Storey et al. (2004))

F̂DR(x) =
x

F̂m(x)
· 1{ bFm(x)>0}, 0 ≤ x ≤ 1 (4)

where

F̂m(x) =
#{pi : pi ≤ x}

m
(5)

the empirical CDF of the p-values p1, . . . , pm.
There is a Bayesian model for this setting, that we will find useful in our

later analysis. Given a prior null probability, π0 and an alternative distribution
F1, the Bayesian model for observing m p-values is the following: for 1 ≤ i ≤ m
independently

1. generate H0,i ∼ Bernoulli(π0);

2. if H0,i = 0, generate pi ∼ Unif(0, 1), else generate pi ∼ F1.

Under this model, it is easy to see that the p-values are unconditionally i.i.d.
with distribution

F = π0 · Unif(0, 1) + (1 − π0) · F1.

Further, without any constraint on F1, the parameter π0 is obviously unidenti-
fiable.

In Efron & Tibshirani (2002) and Storey (2002) it is shown that under this
model

�
(
F̂DR(x)

∣∣F̂ (x) > 0
)

=
π0 · x
F (x)

.

For extensions to large samples, see Storey et al. (2004).
Finally we can derive the relationship between tail strength and FDR. Look-

ing at the plug-in estimate (4), it is easy to see that

TS =

m∑

k=1

(
1 − p(k) ·

m + 1

k

)
'

m∑

k=1

(
1 − p(k) ·

m

k

)
=

m∑

k=1

[1 − F̂DR(pk)]. (6)
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Figure 3: A graphical description of tail strength. It measures a kind of area under
the curve 1−FDR(x) (red), evaluating this function at the observed p-values pk (blue).

Figure 3 gives a graphical interpretation of the simple relationship (6): TS

measures a kind of area under the curve 1 − F̂DR(x), evaluating this function

at the observed p-values pk. Hence the faster 1− F̂DR(x) goes to one (F̂DR(x)
drops to zero) as x ↓ 0, the higher TS. Further, the tighter the p-values are
bunched up near 0, the larger TS.

Another way of seeing that TS can be phrased directly in terms of the test

statistics (as in (3)) comes from the fact that the expression F̂DR in (6) can
be computed on the scale of the test statistics or the p-values. Therefore, TS is
unchanged under any one-to-one transformation of the p-values, and is not tied
to the choice of test statistic used to test each null hypothesis H0i, 1 ≤ i ≤ m.

When the p-values are i.i.d. with distribution F , the following result, proven
in Section 3, is therefore not surprising

�
(TS)

m→∞
=

�
(1 − FDR(X)), X ∼ F (7)

where
FDR(x) =

x

F (x)
(8)

is the population FDR, with the unknown proportion of true null hypotheses π0

set to 1. In other words, the tail strength statistic estimates the average amount
by which the true false discovery rate function falls below its null value of 1,
with the average computed with respect to the true distribution of p-values.

If F is stochastically dominated by Unif(0, 1) then TS is asymptotically

6



normal with variance

Var(TS)
m→∞' C(F )

m
(9)

where C(F ) ≤ 1 if F (x) ≥ x for each x in [0, 1]. We use the approximation

Var(TS) ≈ 1/m (10)

in all of our applications of tail strength.
Note that the quantity m1 = m − m0 measures how many non-null genes

there are in the dataset. Various authors have studied this as a measure of
univariate strength (cf. (Benjamini & Hochberg 2000, Storey et al. 2004)).
However, this does not really measure how different the non-null p-values are
from Unif(0, 1). Further, in the Bayesian model described earlier, this parameter
is not identifiable without some constraint on the alternatives. In contrast, tail
strength is identifiable and measures how far the non-null p-values are from
Unif(0, 1).

3 Asymptotic properties of tail strength

In the false discovery rate (FDR) setting, previous work has shown that exam-
ination of the limiting behavior of (estimates of) FDR and local FDR is useful
in understanding what the various techniques are doing in a population setting.
In this section, we carry out a similar analysis for TS.

We can write

TS = − 1

m

m∑

k=1

(
p(k) −

k

m + 1

)
m + 1

k

'− 1

m

m∑

k=1

(
p(k) −

k

m

)
m

k

= − 1

m

m∑

k=1

k∑

j=1

m

k

(
p(j) − p(j−1) −

1

m

)

= −
m∑

j=1

(
p(j) − p(j−1) −

1

m

) 


m∑

k=j

1

k


 .

Under H0, the spacings of order statistics are distributed as

sj = p(j) − p(j−1) ∼
ξj∑m+1

i=1 ξi

where ξi ∼ Exp(1) are i.i.d. exponential random variables.
This suggests that TS should be asymptotically normally distributed, at

least under H0, because it is the sum of approximately independent random
variables. In fact, TS is also asymptotically normally distributed when the p-
values are identically distributed with distribution F , as in the Bayesian model
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of Storey (2002). We could alternatively assume that some fixed proportion
π0 of the p-values are i.i.d. Unif(0, 1), and the remaining are i.i.d. from some
distribution F1 such that

F = π0 · Unif(0, 1) + (1 − π0) · F1.

This is the mixture model used in the development of local FDR by Efron et al.
(2001) and Efron & Tibshirani (2002). This assumption would not likely change
the essence of our main result, only complicate the proofs.

We begin by expressing (1) in yet another way, in terms of quantile processes.
Let

Q̂m(q) = F̂−1
m (q) = inf{x : F̂m(x) > q} (11)

be the quantile process of the p-values and

Q(q) = F−1(q) = inf{x : F (x) > q} (12)

be the population quantile function.
Given the definition of Qm, it is not hard to see that

Q̂m

(
k

m

)
= p(k), ∀ 1 ≤ k ≤ m.

Using this fact, the expression (1) takes the form of a Riemann sum

TS(p) ' 1

m

m∑

k=1

(
1− p(k)

m

k

)

=
1

m

m∑

k=1

(k/m − Q(j/m)) +
(
Q(j/m) − Q̂m(j/m)

)

k/m

m→∞→
∫ 1

0

1− Q(x)

x
dx +

∫ 1

0

Q(x) − Q̂m(x)

x
dx.

(13)

Such an expression is simpler to analyze than (1), using some results from
the theory of quantile processes.

If Q is Riemann integrable, the first expression converges to

∫ 1

0

(
1 − Q(x)

x

)
dx.

If, further, F has a density, then making the substitution u = Q(x) we see that
this expression is equal to (7).

The result we will use from the theory of quantile processes (Barrio 2004) is
the following: under H0

m1/2
(
Q̂m(x) − Q(x)

)
0≤x≤1

D
= (Bx)0≤x≤1 (14)

8



where (B(x))0≤x≤1 is a standard Brownian bridge. That is, a continuous Gaus-
sian process on [0, 1] with mean 0 and covariance function

Cov(B(x), B(y)) = min(x, y) − xy, 0 ≤ x, y ≤ 1. (15)

Suppose the p-values are i.i.d. with distribution F , where F is twice-
differentiable with strictly positive density f on (0, 1) then (Barrio 2004)

m1/2
(
Q̂m(x) − Q(x)

)
0≤x≤1

⇒
(

Bx

f(Q(x))

)

0≤x≤1

. (16)

This suggests that

m1/2(TS − �
(TS)) ⇒

∫ 1

0

Bx

xf(Q(x))
dx

D
=

∫ 1

0

BF (x)

F (x)
dx.

A straightforward application of Theorem 1 of (Shorack 1972), combined
with the comments above suffices to prove the following result.

Theorem 3.1 Under the Bayesian model of Storey (2002), suppose that F (x) ≥
x. Then, if F has density f , as m → ∞, TS is asymptotically normally dis-
tributed with mean

�
(TS)

m→∞
=

�
(1 − FDR(X)), X ∼ F

and variance

Var(m1/2(TS − �
(TS))

m→∞→
∫ 1

0

∫ 1

0

(
min(x, y)

xy
− 1

)
dQ(x) dQ(y).

Remark: Actually, F need not even have a density, for the central limit to
hold above, though the expected value will be changed slightly. If F has density
f , then under the hypothesis F (x) ≥ x

∫ 1

0

∫ 1

0

(
min(F (x), F (y))

F (x)F (y)
− 1

)
dx dy = 2 ·

∫ 1

0

∫ 1

y

(
1

F (x)
− 1

)
dx dy

≤ 2 ·
∫ 1

0

∫ 1

y

(
1

x
− 1

)
dx dy

= 1

so the variance under H0 is an upper bound.

4 Relationship of TS to area under the ROC

curve

In the diagnostic testing literature (cf. (Hanley & McNeil 1982, Pepe 2003)),
the ROC curve is used to discriminate between two samples. Such a curve
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can also be constructed to compare a sample of test statistics to a given null
distribution. A commonly used summary of the ROC curve is the area under
the ROC curve. In the two-sample setting, the area is essentially equivalent
to the Mann-Whitney test statistic (Hanley & McNeil 1982). This measure
places equal weight on departures from Unif(0, 1) without focusing on the most
interesting region, the tail of the test statistics. One solution is to only look at
the area under the ROC curve up to some false positive level t0 (Pepe 2003),
but the choice of t0 is somewhat arbitrary. Here we show that the tail strength
measure is related to a weighted area under such an ROC curve, weighted to
accentuate the tail of the test statistics.

It is well known (Hanley & McNeil 1982) that for two independent samples

{p1, . . . , pm0
} IID∼ Unif(0, 1) and {q1, . . . , qm1

} IID∼ F that the expected area
under the empirical ROC curve

R̂OC = {(F̂m0
(x), Ĝm1

(x)), x ∈ [0, 1]}

is
Prob {X ≤ Y } , X ∼ Unif(0, 1), Y ∼ F.

The measure TS is also closely related to the area under the ROC curve (Pepe
2003, Hanley & McNeil 1982). Let

ROC = {(F (x), x), x ∈ [0, 1]}

be the population ROC curve reflected along the line y = x. Suppose that
X ∼ Unif(0, 1) and Y ∼ F , then

Pr {X ≤ Y } =

∫ 1

0

Pr(X ≤ y
∣∣Y = y)f(y) dy =

∫ 1

0

yf(y) dy

and this quantity is 1
2 if F = Unif(0, 1). This suggests that the area under the

(ROC) curve

AUC − 1

2
=

∫ 1

0

(x − F (x)) f(x)dx =

∫ 1

0

(
F−1(x) − x

)
dx (17)

is a measure of departure from uniformity. It is positive whenever F (x) ≤ x, or
whenever the p-values are stochastically dominated by Unif(0, 1). This quantity
places equal weight on the differences for all values of x with no focus on the
tail. One way to adjust it is to insert a weight into the expression (17)

AUC − 1

2
=

∫ 1

0

(x − F (x))w(x) f(x)dx (18)

The choice w(x) = x−1 corresponds to TS, in the asymptotic setting. In finite
samples, the integral above is of course replaced by a Riemann sum.

The partial AUC proposed by Pepe (2003) also attempts to accentuate the
tail

pAUC(p0) =

∫ p0

0

(F−1(x) − x) dx.

10



This is of course equivalent to choosing a weight

w(x) = 1[0,p0](x)

while ((17)). Setting w(x) = x−1, which puts more weight on the tail, yields
TS.

5 Real data examples

Figure 4 shows the tail strength measure and asymptotic 90% confidence inter-
vals, applied to 12 different datasets. The datasets are summarized in Table 2.
The first 9 datasets are from microarray studies, and all report positive findings.
Most of these are described Dettling (2004), where some comparative analyses
are also performed.

The remaining datasets are from neuroimaging studies. The datasets aud-
over and aud-sent are from an auditory fMRI study (Taylor & Worsley 2005)
with aud-over being overall activation, and aud-sent a measure of hemodynamic
delay (Liao et al. n.d.) in response to different sentences. The dataset dtiTS
comes from a DTI (Diffusion Tensor Imaging) dataset, studying pediatric dif-
ferences in white matter in dyslexic and control cases (Deutsch et al. 2005), the
p-values reflect local differences in direction of white matter fiber tracts and
were studied in Schwartzmann et al. (2005).

All of the datasets (except for FL) show significant (non-zero) tail strengths
of various degrees. For the subset of classification problems among these studies,
Table 3 compares the estimated tail strength with the misclassification rate from
the nearest shrunken centroid classifier (Tibshirani et al. 2001) [Results from
other classifiers, given in (Dettling 2004), are quite similar]. The error rates
were computed by repeated (2/3, 1/3) train-test splits of the data, except for
the skin data which uses 14 fold cross-validation.

There is one interesting (qualitative) discrepancy in Table 3: the multi-class
brain dataset shows very different behavior in tail strength and misclassification
rate. The tail strength is high— 0.82 , but the misclassification rate seems poor
(23.5%). The test statistic for each gene is an F-statistic— the ratio of between-
class to within-class variance. Figure 5 shows the ordered test statistics versus
their expected values under the null hypothesis. There is clearly more variation
that we would expect by chance.

There are some possible explanations for the seeming discrepancy between
tail strength and classification rate in the brain example. First note that with
five classes, the base error rate is 80%, so that the value 23.5% is actually
a substantial reduction in this rate. In addition, there only 42 cases in this
dataset, so that the training set on which the classifiers were trained had only
28 cases on the average. For the five classes, the class-wise error rates were
(15, 6, 6, 20, 57)%. We computed the tail strengths for each class versus the
rest (based on a two-sample t-statistic): they were (0.39, 0.53, 0.67, 0.54, 0.32).
Hence class 5 has both a high error rate and a lower tail strength. It seems
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Figure 4: Tail strength measure computed on some real datasets. Shown are the TS
measures along with 90% confidence intervals.
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Name Description # Samples # Features Source

Follicular lymphoma Microarray, Survival 93 44,928 Dave et al. (2004)
Skin cancer Microarray, Two classes 58 12625 Rieger et al. (2004)
Diffuse large cell lymphoma Microarray, Survival 240 7399 Rosenwald et al. (2002)
Small round blue cell tumors Microarray, Four classes 63 2308 Khan et al. (2001)
Colon cancer Microarray, Two classes 62 2000 Alon et al. (1999)
Leukemia Microarray, Two classes 72 3571 Golub et al. (1999)
Prostate cancer Microarray, Two classes 102 6033 Singh et al. (2002)
Brain cancer Microarray, Five classes 22 5597 Pomeroy et al. (2002)
Lymphoma Microarray, Two classes 62 4026 Alizadeh et al. (2000)
aud-over FMRI 15 187782 Taylor & Worsley (2005)
aud-sent FMRI 15 187762 Taylor & Worsley (2005)
dtiTS Diffusion tensor imaging 12 20931 Schwartzmann et al. (2005)

Table 2: Summary of datasets for Figure 4
.

Dataset Tail strength % Misclassification rate
Lymphoma 0.82 1.7
Brain 0.82 23.5
SRBCT 0.77 2.4
Prostate 0.70 8.9
Leukemia 0.68 3.6
Colon 0.55 13.5
Skin 0.18 20.1

Table 3: Tail strengths and misclassification rates (test set or cross-validated),
for the classification problems in Table 2. Classification was done using nearest
shrunken centroids.

that the overall tail strength, based on the F-statistic for all five classes, fails to
capture the difficulty in predicting class five.

6 Discussion

The tail strength measure seems to be potentially useful for assessing the overall
significance of a set of hypothesis tests. For example, it gives a quantitative
idea of the overall univariate association between a large set features, such as
the genes in a microarray study, and an outcome of interest. We suggest that
the tail strength could be routinely reported in such studies, to give the reader
a crude idea of the significance in a complex dataset.

In Statistics, there is of course a long history and a substantial literature
in the area of multiple hypothesis testing With the flury of applications in
genomics, there has been a resurgence of interest in this area: see e.g. Dudoit
et al. (2000) for a summary. Our work has a close relationship to the false
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Figure 5: Brain data: ordered statistics (F-statistics) versus their expected values
under the null hypothesis.

discovery rate approach to multiple testing, as we have shown in Section 2.3.
There is recent work of ? (Section 5), in which quantities similar to tail strength
are considered, based on a local version of the false discovery rate.

Another concept that seems connected to tail strength is the higher criticism
of Donoho & Jin (2004), generalizing an idea introduced by Tukey in 1976. They
define

HCm = max{1≤i≤α0·m}

√
m(i/m − p(i))/

√
p(i)(1 − p(i)) (19)

for some α0 > 0. This statistic is designed as an overall summary of the p-values,
and they prove that is optimal for detecting certain sparse patterns of p-values.
They also show that the asymptotic α percentile for HCm is of size

√
log log m.

We attempted some numerical comparisons of HCm with tail strength on the
datasets in this paper, but were not successful. The presence of some very small
p-values made the denominator very small and caused the statistic to blow up.
In addition, it wasn’t clear how to choose α0 and the significance cutpoint in
finite samples. We leave this comparison for future study.

In summary, the tail strength measure proposed here is simple to compute,
with no parameters that require adjustment. It must be stressed, however, that
it does not measure all of the interesting structure that might be present in a
dataset. When applied to univariate association measures, it does not capture
interactions or multivariate effects that might exist.
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